
In physical geography, a tundra (/ˈtʌndrə, ˈtʊn-/) is a type of biome where tree growth is hindered by frigid temperatures and short growing seasons. There are three regions and associated types of tundra: Arctic,Alpine, and Antarctic.
Tundra | |
---|---|
![]() Tundra in Greenland | |
![]() extent of the Arctic tundra | |
Geography | |
Area | 11,563,300 km2 (4,464,600 sq mi) |
Climate type | ET |
Tundra vegetation is composed of dwarf shrubs, sedges, grasses, mosses, and lichens. Scattered trees grow in some tundra regions. The ecotone (or ecological boundary region) between the tundra and the forest is known as the tree line or timberline. The tundra soil is rich in nitrogen and phosphorus. The soil also contains large amounts of biomass and decomposed biomass that has been stored as methane and carbon dioxide in the permafrost, making the tundra soil a carbon sink. As global warming heats the ecosystem and causes soil thawing, the permafrost carbon cycle accelerates and releases much of these soil-contained greenhouse gases into the atmosphere, creating a feedback cycle that contributes to global warming.
Etymology
The term is a Russian word adapted from the Sámi languages.
Arctic
Arctic tundra occurs in the far Northern Hemisphere, north of the taiga belt. The word "tundra" usually refers only to the areas where the subsoil is permafrost, or permanently frozen soil. (It may also refer to the treeless plain in general so that northern Sápmi would be included.) Permafrost tundra includes vast areas of northern Russia and Canada. The polar tundra is home to several peoples who are mostly nomadic reindeer herders, such as the Nganasan and Nenets in the permafrost area (and the Sami in Sápmi).
Arctic tundra contains areas of stark landscape and is frozen for much of the year. The soil there is frozen from 25 to 90 cm (10 to 35 in) down, making it impossible for trees to grow there. Instead, bare and sometimes rocky land can only support certain kinds of Arctic vegetation, low-growing plants such as moss, heath (Ericaceae varieties such as crowberry and black bearberry), and lichen.
There are two main seasons, winter and summer, in the polar tundra areas. During the winter it is very cold, dark, and windy with the average temperature around −28 °C (−18 °F), sometimes dipping as low as −50 °C (−58 °F). However, extreme cold temperatures on the tundra do not drop as low as those experienced in taiga areas further south (for example, Russia's, Canada's, and Alaska's lowest temperatures were recorded in locations south of the tree line). During the summer, temperatures rise somewhat, and the top layer of seasonally-frozen soil melts, leaving the ground very soggy. The tundra is covered in marshes, lakes, bogs, and streams during the warm months. Generally daytime temperatures during the summer rise to about 12 °C (54 °F) but can often drop to 3 °C (37 °F) or even below freezing. Arctic tundras are sometimes the subject of habitat conservation programs. In Canada and Russia, many of these areas are protected through a national Biodiversity Action Plan.
Tundra tends to be windy, with winds often blowing upwards of 50–100 km/h (31–62 mph). However, it is desert-like, with only about 150–250 mm (6–10 in) of precipitation falling per year (the summer is typically the season of maximum precipitation). Although precipitation is light, evaporation is also relatively minimal. During the summer, the permafrost thaws just enough to let plants grow and reproduce, but because the ground below this is frozen, the water cannot sink any lower, so the water forms the lakes and marshes found during the summer months. There is a natural pattern of accumulation of fuel and wildfire which varies depending on the nature of vegetation and terrain. Research in Alaska has shown fire-event return intervals (FRIs) that typically vary from 150 to 200 years, with dryer lowland areas burning more frequently than wetter highland areas.
The biodiversity of tundras is low: 1,700 species of vascular plants and only 48 species of land mammals can be found, although millions of birds migrate there each year for the marshes. There are also a few fish species. There are few species with large populations. Notable plants in the Arctic tundra include blueberry (Vaccinium uliginosum), crowberry (Empetrum nigrum), reindeer lichen (Cladonia rangiferina), lingonberry (Vaccinium vitis-idaea), and Labrador tea (Rhododendron groenlandicum). Notable animals include reindeer (caribou), musk ox, Arctic hare, Arctic fox, snowy owl, ptarmigan, northern red-backed voles, lemmings, the mosquito, and even polar bears near the ocean. Tundra is largely devoid of poikilotherms such as frogs or lizards.
Due to the harsh climate of Arctic tundra, regions of this kind have seen little human activity, even though they are sometimes rich in natural resources such as petroleum, natural gas, and uranium. In recent times this has begun to change in Alaska, Russia, and some other parts of the world: for example, the Yamalo-Nenets Autonomous Okrug produces 90% of Russia's natural gas.
Relationship to climate change
A severe threat to tundra is global warming, which causes permafrost to thaw. The thawing of the permafrost in a given area on human time scales (decades or centuries) could radically change which species can survive there. It also represents a significant risk to infrastructure built on top of permafrost, such as roads and pipelines.
In locations where dead vegetation and peat have accumulated, there is a risk of wildfire, such as the 1,039 km2 (401 sq mi) of tundra which burned in 2007 on the north slope of the Brooks Range in Alaska. Such events may both result from and contribute to global warming.
Carbon emissions from permafrost thaw contribute to the same warming which facilitates the thaw, making it a positive climate change feedback. The warming also intensifies Arctic water cycle, and the increased amounts of warmer rain are another factor which increases permafrost thaw depths.
The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14–175 billion tonnes of carbon dioxide per 1 °C (1.8 °F) of warming. For comparison, by 2019, annual anthropogenic emission of carbon dioxide alone stood around 40 billion tonnes. A 2018 perspectives article discussing tipping points in the climate system activated around 2 °C (3.6 °F) of global warming suggested that at this threshold, permafrost thaw would add a further 0.09 °C (0.16 °F) to global temperatures by 2100, with a range of 0.04–0.16 °C (0.07–0.29 °F)
Antarctic
Antarctic tundra occurs on Antarctica and on several Antarctic and subantarctic islands, including South Georgia and the South Sandwich Islands and the Kerguelen Islands. Most of Antarctica is too cold and dry to support vegetation, and most of the continent is covered by ice fields or cold deserts. However, some portions of the continent, particularly the Antarctic Peninsula, have areas of rocky soil that support plant life. The flora presently consists of around 300–400 species of lichens, 100 mosses, 25 liverworts, and around 700 terrestrial and aquatic algae species, which live on the areas of exposed rock and soil around the shore of the continent. Antarctica's two flowering plant species, the Antarctic hair grass (Deschampsia antarctica) and Antarctic pearlwort (Colobanthus quitensis), are found on the northern and western parts of the Antarctic Peninsula. In contrast with the Arctic tundra, the Antarctic tundra lacks a large mammal fauna, mostly due to its physical isolation from the other continents. Sea mammals and sea birds, including seals and penguins, inhabit areas near the shore, and some small mammals, like rabbits and cats, have been introduced by humans to some of the subantarctic islands. The Antipodes Subantarctic Islands tundra ecoregion includes the Bounty Islands, Auckland Islands, Antipodes Islands, the Campbell Island group, and Macquarie Island. Species endemic to this ecoregion include Corybas dienemus and Corybas sulcatus, the only subantarctic orchids; the royal penguin; and the Antipodean albatross.
There is some ambiguity on whether Magellanic moorland, on the west coast of Patagonia, should be considered tundra or not.Phytogeographer Edmundo Pisano called it tundra (Spanish: tundra Magallánica) since he considered the low temperatures key to restrict plant growth. More recent approaches have since recognized it as a temperate grassland, restricting southern tundra to coastal Antarctica and its islands.
The flora and fauna of Antarctica and the Antarctic Islands (south of 60° south latitude) are protected by the Antarctic Treaty.
Alpine
Alpine tundra does not contain trees because the climate and soils at high altitude block tree growth.: 51 The cold climate of the alpine tundra is caused by the low air temperatures, and is similar to polar climate. Alpine tundra is generally better drained than arctic soils. Alpine tundra transitions to subalpine forests below the tree line; stunted forests occurring at the forest-tundra ecotone (the treeline) are known as Krummholz. Alpine tundra can be affected by woody plant encroachment.
Alpine tundra occurs in mountains worldwide. The flora of the alpine tundra is characterized by plants that grow close to the ground, including perennial grasses, sedges, forbs, cushion plants, mosses, and lichens. The flora is adapted to the harsh conditions of the alpine environment, which include low temperatures, dryness, ultraviolet radiation, and a short growing season.
Climatic classification
Tundra climates ordinarily fit the Köppen climate classification ET, signifying a local climate in which at least one month has an average temperature high enough to melt snow (0 °C (32 °F)), but no month with an average temperature in excess of 10 °C (50 °F). The cold limit generally meets the EF climates of permanent ice and snows; the warm-summer limit generally corresponds with the poleward or altitudinal limit of trees, where they grade into the subarctic climates designated Dfd, Dwd and Dsd (extreme winters as in parts of Siberia), Dfc typical in Alaska, Canada, mountain areas of Scandinavia, European Russia, and Western Siberia (cold winters with months of freezing).
Despite the potential diversity of climates in the ET category involving precipitation, extreme temperatures, and relative wet and dry seasons, this category is rarely subdivided. Rainfall and snowfall are generally slight due to the low vapor pressure of water in the chilly atmosphere, but as a rule potential evapotranspiration is extremely low, allowing soggy terrain of swamps and bogs even in places that get precipitation typical of deserts of lower and middle latitudes. The amount of native tundra biomass depends more on the local temperature than the amount of precipitation.
See also
- Alas
- Fellfield
- List of tundra ecoregions from the WWF
- Mammoth steppe
- Park Tundra
References
- "Ecoregions". World Wildlife Fund. Archived from the original on 4 June 2011.
- "The Tundra Biome". The World's Biomes. University of California, Berkeley. Archived from the original on 22 July 2023. Retrieved 5 March 2006.
- "Terrestrial Ecoregions: Antarctica". Wild World. National Geographic Society. Archived from the original on 5 August 2011. Retrieved 2 November 2009.
- Aapala, Kirsti. "Tunturista jängälle" [From fell to mountain] (in Finnish). Archived from the original on 1 October 2006. Retrieved 17 January 2024.
- "Tundra Biome". National Geographic. Retrieved 4 April 2024.
- "Tundra". Earth Observatory. NASA. Retrieved 11 September 2022.
- "The tundra biome". University of California Museum of Paleontology. Retrieved 11 September 2020.
- Higuera, Philip E.; Chipman, Melissa L.; Barnes, Jennifer L.; Urban, Michael A.; et al. (December 2011). "Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications". Ecological Applications. 21 (8): 3211–3226. Bibcode:2011EcoAp..21.3211H. doi:10.1890/11-0387.1. ISSN 1051-0761.
- "Great Plain of the Koukdjuak". Ibacanada.com. Retrieved 16 February 2011.
- "Tundra". Lake Clark National Park & Preserve. NPS. Retrieved 18 October 2021.
- "Where Are Arctic Mosquitoes Most Abundant in Greenland and Why?". Ecological Society of America. 4 August 2020.
- "Tundra". Blue Planet Biomes. Retrieved 5 March 2006.
- "Tundra Threats". National Geographic. Archived from the original on 7 December 2008. Retrieved 3 April 2008.
- Gillis, Justin (16 December 2011). "As Permafrost Thaws, Scientists Study the Risks". The New York Times. Retrieved 17 December 2011.
- Mack, Michelle C.; Bret-Harte, M. Syndonia; Hollingsworth, Teresa N.; Jandt, Randi R.; et al. (28 July 2011). "Carbon loss from an unprecedented Arctic tundra wildfire" (PDF). Nature. 475 (7357): 489–492. Bibcode:2011Natur.475..489M. doi:10.1038/nature10283. PMID 21796209. S2CID 4371811. Archived from the original (PDF) on 14 November 2012. Retrieved 20 July 2012.
- Douglas, Thomas A.; Turetsky, Merritt R.; Koven, Charles D. (24 July 2020). "Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems". npj Climate and Atmospheric Science. 3 (1): 5626. Bibcode:2020npCAS...3...28D. doi:10.1038/s41612-020-0130-4.
- Fox-Kemper, B; et al. (2021). "Chapter 9: Ocean, Cryosphere and Sea Level Change" (PDF). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. p. 1237. doi:10.1017/9781009157896.011.
- Schellnhuber, Hans Joachim; et al. (2018). "Trajectories of the Earth System in the Anthropocene". Proceedings of the National Academy of Sciences. 115 (33): 8252–8259. Bibcode:2018PNAS..115.8252S. doi:10.1073/pnas.1810141115. ISSN 0027-8424. PMC 6099852. PMID 30082409.
- "Terrestrial Plants". British Antarctic Survey: About Antarctica. Retrieved 5 March 2006.
- "Antipodes Subantarctic Islands tundra". Terrestrial Ecoregions. World Wildlife Fund. Retrieved 2 November 2009.
- Longton, R.E. (1988). Biology of Polar Bryophytes and Lichen. Studies in Polar Research. Cambridge University Press. p. 20. ISBN 978-0-521-25015-3.
- Olson, David M.; et al. (2011). "Terrestrial Ecoregions of the World: A New Map of Life on Earth". BioScience. 51 (11): 933–938. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.
- Dinerstein, Eric; et al. (2017). "An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm". BioScience. 67 (6): 534–545. doi:10.1093/biosci/bix014. PMC 5451287. PMID 28608869.
- "Patagonia Steppe & Low Mountains Bioregion". One Earth.
- "Protocol on Environmental Protection to the Antarctic Treaty". British Antarctic Survey: About Antarctica. Retrieved 5 March 2006.
- Elliott-Fisk, D.L. (2000). "The Taiga and Boreal Forest". In Barbour, M.G.; Billings, M.D. (eds.). North American Terrestrial Vegetation (2nd ed.). Cambridge University Press. ISBN 978-0-521-55986-7.
- Marsman, Floor; Nystuen, Kristin O.; Opedal, Øystein H.; Foest, Jessie J.; Sørensen, Mia Vedel; De Frenne, Pieter; Graae, Bente Jessen; Limpens, Juul (January 2021). Pugnaire, Francisco (ed.). "Determinants of tree seedling establishment in alpine tundra". Journal of Vegetation Science. 32 (1). Bibcode:2021JVegS..32E2948M. doi:10.1111/jvs.12948. hdl:11250/2733966. ISSN 1100-9233.
- Körner, Christian (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Berlin: Springer. ISBN 978-3-540-00347-2.
- Kottek, Markus; Grieser, Jürgen; Beck, Christoph; Rudolf, Bruno; Rubel, Franz (2006). "World Map of the Köppen-Geiger Climate Classification Updated". Meteorol. Z. 15 (3): 259–263. Bibcode:2006MetZe..15..259K. doi:10.1127/0941-2948/2006/0130.
- "Tundra". geodiode.com. September 2011.
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. (2007). "Updated world map of the Köppen-Geiger climate classification". Hydrol. Earth Syst. Sci. 11 (5): 1633–1644. Bibcode:2007HESS...11.1633P. doi:10.5194/hess-11-1633-2007. S2CID 9654551.
- Keuper, F.; Parmentier, F.J.; Blok, D.; van Bodegom, P.M.; Dorrepaal, E.; van Hal, J.R.; van Logtestijn, R.S.; Aerts, R. (2012). "Tundra in the rain: differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra". Ambio. 41 Suppl 3(Suppl 3) (Suppl 3): 269–80. Bibcode:2012Ambio..41S.269K. doi:10.1007/s13280-012-0305-2. PMC 3535056. PMID 22864700.
Further reading
- Allaby, Michael; Moore, Peter D.; Day, Trevor; Garratt, Richard (2008). Tundra. Facts on File. ISBN 978-0-8160-5934-8.
Tundra.
- Bliss, L. C; O. W. Heal; J. J. Moore (1981). Tundra Ecosystems: A Comparative Analysis. International Biological Programme Synthesis Series (No. 25). ISBN 978-0-521-22776-6.
- Warhol, Tom (2007). Tundra. Marshall Cavendish Benchmark. ISBN 978-0-7614-2193-1.
- Yu I, Chernov (1998). The Living Tundra;Studies in Polar Research. Cambridge University Press. ISBN 978-0-521-35754-8.
External links
- WWF Tundra Ecoregions Archived 23 February 2010 at the Wayback Machine
- The Arctic biome at Classroom of the Future
- Arctic Feedbacks to Global Warming: Tundra Degradation in the Russian Arctic
- British Antarctica Survey
- Antarctica: West of the Transantarctic Mountains
- World Map of Tundra
In physical geography a tundra ˈ t ʌ n d r e ˈ t ʊ n is a type of biome where tree growth is hindered by frigid temperatures and short growing seasons There are three regions and associated types of tundra Arctic Alpine and Antarctic TundraTundra in Greenland extent of the Arctic tundraGeographyArea11 563 300 km2 4 464 600 sq mi Climate typeET Tundra vegetation is composed of dwarf shrubs sedges grasses mosses and lichens Scattered trees grow in some tundra regions The ecotone or ecological boundary region between the tundra and the forest is known as the tree line or timberline The tundra soil is rich in nitrogen and phosphorus The soil also contains large amounts of biomass and decomposed biomass that has been stored as methane and carbon dioxide in the permafrost making the tundra soil a carbon sink As global warming heats the ecosystem and causes soil thawing the permafrost carbon cycle accelerates and releases much of these soil contained greenhouse gases into the atmosphere creating a feedback cycle that contributes to global warming EtymologyThe term is a Russian word adapted from the Sami languages ArcticArctic tundra occurs in the far Northern Hemisphere north of the taiga belt The word tundra usually refers only to the areas where the subsoil is permafrost or permanently frozen soil It may also refer to the treeless plain in general so that northern Sapmi would be included Permafrost tundra includes vast areas of northern Russia and Canada The polar tundra is home to several peoples who are mostly nomadic reindeer herders such as the Nganasan and Nenets in the permafrost area and the Sami in Sapmi Tundra in Siberia Arctic tundra contains areas of stark landscape and is frozen for much of the year The soil there is frozen from 25 to 90 cm 10 to 35 in down making it impossible for trees to grow there Instead bare and sometimes rocky land can only support certain kinds of Arctic vegetation low growing plants such as moss heath Ericaceae varieties such as crowberry and black bearberry and lichen There are two main seasons winter and summer in the polar tundra areas During the winter it is very cold dark and windy with the average temperature around 28 C 18 F sometimes dipping as low as 50 C 58 F However extreme cold temperatures on the tundra do not drop as low as those experienced in taiga areas further south for example Russia s Canada s and Alaska s lowest temperatures were recorded in locations south of the tree line During the summer temperatures rise somewhat and the top layer of seasonally frozen soil melts leaving the ground very soggy The tundra is covered in marshes lakes bogs and streams during the warm months Generally daytime temperatures during the summer rise to about 12 C 54 F but can often drop to 3 C 37 F or even below freezing Arctic tundras are sometimes the subject of habitat conservation programs In Canada and Russia many of these areas are protected through a national Biodiversity Action Plan Vuntut National Park in Canada Tundra tends to be windy with winds often blowing upwards of 50 100 km h 31 62 mph However it is desert like with only about 150 250 mm 6 10 in of precipitation falling per year the summer is typically the season of maximum precipitation Although precipitation is light evaporation is also relatively minimal During the summer the permafrost thaws just enough to let plants grow and reproduce but because the ground below this is frozen the water cannot sink any lower so the water forms the lakes and marshes found during the summer months There is a natural pattern of accumulation of fuel and wildfire which varies depending on the nature of vegetation and terrain Research in Alaska has shown fire event return intervals FRIs that typically vary from 150 to 200 years with dryer lowland areas burning more frequently than wetter highland areas A small herd of muskoxen in the Kakagrak Hills Alaska The biodiversity of tundras is low 1 700 species of vascular plants and only 48 species of land mammals can be found although millions of birds migrate there each year for the marshes There are also a few fish species There are few species with large populations Notable plants in the Arctic tundra include blueberry Vaccinium uliginosum crowberry Empetrum nigrum reindeer lichen Cladonia rangiferina lingonberry Vaccinium vitis idaea and Labrador tea Rhododendron groenlandicum Notable animals include reindeer caribou musk ox Arctic hare Arctic fox snowy owl ptarmigan northern red backed voles lemmings the mosquito and even polar bears near the ocean Tundra is largely devoid of poikilotherms such as frogs or lizards Due to the harsh climate of Arctic tundra regions of this kind have seen little human activity even though they are sometimes rich in natural resources such as petroleum natural gas and uranium In recent times this has begun to change in Alaska Russia and some other parts of the world for example the Yamalo Nenets Autonomous Okrug produces 90 of Russia s natural gas Relationship to climate change Permafrost thawing can cause slumping in the landscape A severe threat to tundra is global warming which causes permafrost to thaw The thawing of the permafrost in a given area on human time scales decades or centuries could radically change which species can survive there It also represents a significant risk to infrastructure built on top of permafrost such as roads and pipelines In locations where dead vegetation and peat have accumulated there is a risk of wildfire such as the 1 039 km2 401 sq mi of tundra which burned in 2007 on the north slope of the Brooks Range in Alaska Such events may both result from and contribute to global warming Carbon emissions from permafrost thaw contribute to the same warming which facilitates the thaw making it a positive climate change feedback The warming also intensifies Arctic water cycle and the increased amounts of warmer rain are another factor which increases permafrost thaw depths The IPCC Sixth Assessment Report estimates that carbon dioxide and methane released from permafrost could amount to the equivalent of 14 175 billion tonnes of carbon dioxide per 1 C 1 8 F of warming For comparison by 2019 annual anthropogenic emission of carbon dioxide alone stood around 40 billion tonnes A 2018 perspectives article discussing tipping points in the climate system activated around 2 C 3 6 F of global warming suggested that at this threshold permafrost thaw would add a further 0 09 C 0 16 F to global temperatures by 2100 with a range of 0 04 0 16 C 0 07 0 29 F AntarcticTundra on the Kerguelen Islands Antarctic tundra occurs on Antarctica and on several Antarctic and subantarctic islands including South Georgia and the South Sandwich Islands and the Kerguelen Islands Most of Antarctica is too cold and dry to support vegetation and most of the continent is covered by ice fields or cold deserts However some portions of the continent particularly the Antarctic Peninsula have areas of rocky soil that support plant life The flora presently consists of around 300 400 species of lichens 100 mosses 25 liverworts and around 700 terrestrial and aquatic algae species which live on the areas of exposed rock and soil around the shore of the continent Antarctica s two flowering plant species the Antarctic hair grass Deschampsia antarctica and Antarctic pearlwort Colobanthus quitensis are found on the northern and western parts of the Antarctic Peninsula In contrast with the Arctic tundra the Antarctic tundra lacks a large mammal fauna mostly due to its physical isolation from the other continents Sea mammals and sea birds including seals and penguins inhabit areas near the shore and some small mammals like rabbits and cats have been introduced by humans to some of the subantarctic islands The Antipodes Subantarctic Islands tundra ecoregion includes the Bounty Islands Auckland Islands Antipodes Islands the Campbell Island group and Macquarie Island Species endemic to this ecoregion include Corybas dienemus and Corybas sulcatus the only subantarctic orchids the royal penguin and the Antipodean albatross There is some ambiguity on whether Magellanic moorland on the west coast of Patagonia should be considered tundra or not Phytogeographer Edmundo Pisano called it tundra Spanish tundra Magallanica since he considered the low temperatures key to restrict plant growth More recent approaches have since recognized it as a temperate grassland restricting southern tundra to coastal Antarctica and its islands The flora and fauna of Antarctica and the Antarctic Islands south of 60 south latitude are protected by the Antarctic Treaty AlpineAlpine tundra in the North Cascades of Washington United States Alpine tundra does not contain trees because the climate and soils at high altitude block tree growth 51 The cold climate of the alpine tundra is caused by the low air temperatures and is similar to polar climate Alpine tundra is generally better drained than arctic soils Alpine tundra transitions to subalpine forests below the tree line stunted forests occurring at the forest tundra ecotone the treeline are known as Krummholz Alpine tundra can be affected by woody plant encroachment Alpine tundra occurs in mountains worldwide The flora of the alpine tundra is characterized by plants that grow close to the ground including perennial grasses sedges forbs cushion plants mosses and lichens The flora is adapted to the harsh conditions of the alpine environment which include low temperatures dryness ultraviolet radiation and a short growing season Climatic classificationTundra region with fjords glaciers and mountains Kongsfjorden Spitsbergen Tundra climates ordinarily fit the Koppen climate classification ET signifying a local climate in which at least one month has an average temperature high enough to melt snow 0 C 32 F but no month with an average temperature in excess of 10 C 50 F The cold limit generally meets the EF climates of permanent ice and snows the warm summer limit generally corresponds with the poleward or altitudinal limit of trees where they grade into the subarctic climates designated Dfd Dwd and Dsd extreme winters as in parts of Siberia Dfc typical in Alaska Canada mountain areas of Scandinavia European Russia and Western Siberia cold winters with months of freezing Despite the potential diversity of climates in the ET category involving precipitation extreme temperatures and relative wet and dry seasons this category is rarely subdivided Rainfall and snowfall are generally slight due to the low vapor pressure of water in the chilly atmosphere but as a rule potential evapotranspiration is extremely low allowing soggy terrain of swamps and bogs even in places that get precipitation typical of deserts of lower and middle latitudes The amount of native tundra biomass depends more on the local temperature than the amount of precipitation See alsoAlas Fellfield List of tundra ecoregions from the WWF Mammoth steppe Park TundraReferences Ecoregions World Wildlife Fund Archived from the original on 4 June 2011 The Tundra Biome The World s Biomes University of California Berkeley Archived from the original on 22 July 2023 Retrieved 5 March 2006 Terrestrial Ecoregions Antarctica Wild World National Geographic Society Archived from the original on 5 August 2011 Retrieved 2 November 2009 Aapala Kirsti Tunturista jangalle From fell to mountain in Finnish Archived from the original on 1 October 2006 Retrieved 17 January 2024 Tundra Biome National Geographic Retrieved 4 April 2024 Tundra Earth Observatory NASA Retrieved 11 September 2022 The tundra biome University of California Museum of Paleontology Retrieved 11 September 2020 Higuera Philip E Chipman Melissa L Barnes Jennifer L Urban Michael A et al December 2011 Variability of tundra fire regimes in Arctic Alaska millennial scale patterns and ecological implications Ecological Applications 21 8 3211 3226 Bibcode 2011EcoAp 21 3211H doi 10 1890 11 0387 1 ISSN 1051 0761 Great Plain of the Koukdjuak Ibacanada com Retrieved 16 February 2011 Tundra Lake Clark National Park amp Preserve NPS Retrieved 18 October 2021 Where Are Arctic Mosquitoes Most Abundant in Greenland and Why Ecological Society of America 4 August 2020 Tundra Blue Planet Biomes Retrieved 5 March 2006 Tundra Threats National Geographic Archived from the original on 7 December 2008 Retrieved 3 April 2008 Gillis Justin 16 December 2011 As Permafrost Thaws Scientists Study the Risks The New York Times Retrieved 17 December 2011 Mack Michelle C Bret Harte M Syndonia Hollingsworth Teresa N Jandt Randi R et al 28 July 2011 Carbon loss from an unprecedented Arctic tundra wildfire PDF Nature 475 7357 489 492 Bibcode 2011Natur 475 489M doi 10 1038 nature10283 PMID 21796209 S2CID 4371811 Archived from the original PDF on 14 November 2012 Retrieved 20 July 2012 Douglas Thomas A Turetsky Merritt R Koven Charles D 24 July 2020 Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems npj Climate and Atmospheric Science 3 1 5626 Bibcode 2020npCAS 3 28D doi 10 1038 s41612 020 0130 4 Fox Kemper B et al 2021 Chapter 9 Ocean Cryosphere and Sea Level Change PDF Climate Change 2021 The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge Cambridge University Press p 1237 doi 10 1017 9781009157896 011 Schellnhuber Hans Joachim et al 2018 Trajectories of the Earth System in the Anthropocene Proceedings of the National Academy of Sciences 115 33 8252 8259 Bibcode 2018PNAS 115 8252S doi 10 1073 pnas 1810141115 ISSN 0027 8424 PMC 6099852 PMID 30082409 Terrestrial Plants British Antarctic Survey About Antarctica Retrieved 5 March 2006 Antipodes Subantarctic Islands tundra Terrestrial Ecoregions World Wildlife Fund Retrieved 2 November 2009 Longton R E 1988 Biology of Polar Bryophytes and Lichen Studies in Polar Research Cambridge University Press p 20 ISBN 978 0 521 25015 3 Olson David M et al 2011 Terrestrial Ecoregions of the World A New Map of Life on Earth BioScience 51 11 933 938 doi 10 1641 0006 3568 2001 051 0933 TEOTWA 2 0 CO 2 Dinerstein Eric et al 2017 An Ecoregion Based Approach to Protecting Half the Terrestrial Realm BioScience 67 6 534 545 doi 10 1093 biosci bix014 PMC 5451287 PMID 28608869 Patagonia Steppe amp Low Mountains Bioregion One Earth Protocol on Environmental Protection to the Antarctic Treaty British Antarctic Survey About Antarctica Retrieved 5 March 2006 Elliott Fisk D L 2000 The Taiga and Boreal Forest In Barbour M G Billings M D eds North American Terrestrial Vegetation 2nd ed Cambridge University Press ISBN 978 0 521 55986 7 Marsman Floor Nystuen Kristin O Opedal Oystein H Foest Jessie J Sorensen Mia Vedel De Frenne Pieter Graae Bente Jessen Limpens Juul January 2021 Pugnaire Francisco ed Determinants of tree seedling establishment in alpine tundra Journal of Vegetation Science 32 1 Bibcode 2021JVegS 32E2948M doi 10 1111 jvs 12948 hdl 11250 2733966 ISSN 1100 9233 Korner Christian 2003 Alpine Plant Life Functional Plant Ecology of High Mountain Ecosystems Berlin Springer ISBN 978 3 540 00347 2 Kottek Markus Grieser Jurgen Beck Christoph Rudolf Bruno Rubel Franz 2006 World Map of the Koppen Geiger Climate Classification Updated Meteorol Z 15 3 259 263 Bibcode 2006MetZe 15 259K doi 10 1127 0941 2948 2006 0130 Tundra geodiode com September 2011 Peel M C Finlayson B L McMahon T A 2007 Updated world map of the Koppen Geiger climate classification Hydrol Earth Syst Sci 11 5 1633 1644 Bibcode 2007HESS 11 1633P doi 10 5194 hess 11 1633 2007 S2CID 9654551 Keuper F Parmentier F J Blok D van Bodegom P M Dorrepaal E van Hal J R van Logtestijn R S Aerts R 2012 Tundra in the rain differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra Ambio 41 Suppl 3 Suppl 3 Suppl 3 269 80 Bibcode 2012Ambio 41S 269K doi 10 1007 s13280 012 0305 2 PMC 3535056 PMID 22864700 Further readingAllaby Michael Moore Peter D Day Trevor Garratt Richard 2008 Tundra Facts on File ISBN 978 0 8160 5934 8 Tundra Bliss L C O W Heal J J Moore 1981 Tundra Ecosystems A Comparative Analysis International Biological Programme Synthesis Series No 25 ISBN 978 0 521 22776 6 Warhol Tom 2007 Tundra Marshall Cavendish Benchmark ISBN 978 0 7614 2193 1 Yu I Chernov 1998 The Living Tundra Studies in Polar Research Cambridge University Press ISBN 978 0 521 35754 8 External linksWWF Tundra Ecoregions Archived 23 February 2010 at the Wayback Machine The Arctic biome at Classroom of the Future Arctic Feedbacks to Global Warming Tundra Degradation in the Russian Arctic British Antarctica Survey Antarctica West of the Transantarctic Mountains World Map of TundraTundra at Wikipedia s sister projects Definitions from WiktionaryMedia from CommonsTravel guides from Wikivoyage